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PML-FDTD in Cylindrical and Spherical Grids

F. L. Teixeira and W. C. Chewkellow, IEEE

Abstract— Perfectly matched layers (PML's) are derived 1) Cylindrical PML: The PML formulation for a cylindri-
for cylindrical and spherical finite-difference time-domain cal coordinate system proceeds by writing the ME’s on a
(FDTD) grids. The formulation relies on the complex coordinate complex cylindrical coordinate. Only the TMcase will be
stretching approach. Two-dimensional (2-D) cylindrical and . . .
three-dimensional (3-D) spherical staggered-grid FDTD codes addre_ssed. The TEcase f(?"OWS by duality. Since in the
are written based on the time-domain versions of the equations. direction the PML formulation does not change, only the 2-D
Numerical simulations validate the formulation by showing problem is treated. To achieve the reflectionless absorption of

very good agreement between the perfectly matched layer- the outward traveling waves, the radial coordinate is mapped
finite-difference time-domain (FDTD) results and the free-space through e—iwt convention)

analytic solutions.
~ r / / r / ~0P(pl) /
p—p= [ sp(p)dp = ap(p') +i=—— |dp
0 0

|. INTRODUCTION w

HE perfectly matched layer (PML) [1] proved to be a very =b,(p) + LA”_(p) (2)
efficient means to truncate the computational domain in w

the finite-difference time-domain (FDTD) method [2]-[6]. Thet, and o, are added degrees of freedom. By splitting the

original PML concept applied only to Cartesian coordinate§omponent of the electric field. = E., + E.,, ME’s in

To extend its range of applicability, the PML concept was latéomplex space are cast in a form suitable for time-stepping:

extended to nonorthogonal FDTD grids [7], [8]. However, an ] - N

approximate impedance matching condition was used, since (iwsy )k, = —a—p(Pqu) (3a)

the perfect matching condition was derived based on the

assumption of the metric coefficients to be independent of the (iwp) Ezp = gd}%” (30)
spatial coordinates. (iwp)eE,y = =L (3¢c)
In this work, we derive PML media for cylindrical and 9¢
spherical cpordingte systems .with an exact fqrmglation in the (iwsp)pHy = _E(Ezp + E.,) (3d)
sense that it provides a reflectionless termination in the contin- dp
uum limit. The formulation is based on the complex coordinate (iwp)uH, = Q(E, Y E.,) (3e)
stretching approach [2]. Results are compared against analytic P g T TR
solutions. Only the E. component H. in the TE. case) is split. This
is because the transversal problem has stretching only on the
Il. FORMULATION p direction. This is in contrast to the Cartesian case where all
With the following change of variables: field components need to be split in the split-field formulation
[1], [3]. However, additional field¥., and pH, are needed.
5_ /<3 () d¢’ ) The time-domain version of (3) is implemented in the usual
—Jo ¢ cylindrical staggered-grid scheme [12].

. . Alternative generalizations of the PML to cylindrical coor-
where s¢(C) are the complex stretching variables [2] a0d dinates were also recently considered in [10] and [11]. The

stands forz, y, z, it is possible to show [9] that the modified . . ; ;

NG : . approach of [10] is based on the anisotropic formulation [5],
Maxwe!l s Equations (ME's) [2] on a PML l:nedlum can b 6], and the approach of [11] is based on a modified version
recast in the same form as the original ME's but on a co

X . ; . f ME’s amenable to be recast on a well-posed scheme.
plex variable spatial domairii, g, 2). Closed-form solutions P

already obtained in the ordinary media can be mapped t 2) Spherical PML: In spherical coordinates, the analytic

: . . . . ntinuation is on the radial vari
the PML media through a simple analytic continuation of th%8 uation is on the radial variable

r T J
spatial variables to a complex space. Moreover, this analytic , _, 7 — / se(r!) dir’ = / <ar(7") + LM) dr’
continuation, if causal, can be easily generalized to other 0 0 w
coordinate systems to provide PML'’s on these systems [9]. Ar(r)

W

=bo(r) +i (4)
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, . ) dE, 1
(iws )uHg = ma—d)(&ﬂ) ~ (5b) o
, . 0B, 0 |
(st1)l/LH¢ = a—7~ et %(87E7) (SC) 0.6
(iwi)Hg = iwHy (5d) 04

(iwi)Hy = iwHy. (5e)
0.2

The modified Ampere’s law follows by duality. In spherical
coordinates there is no need to split the fields at all, sinces
the PML is achieved through complex stretching on the radial -o2f
variable,r, only. This is in contrast to the three-dimensional
(3-D) Cartesian case, where there are 12 field components after |
field splitting and six boundary surfaces to treat. However, _os}
additional fields components are needed inside the RME;.,

Ey, E,, s,.H,, Hs, andH,. The spatial discretization scheme % 05 i 15 2 25
. .. . . t . 8
and the treatment of the singularities on the spherical grid fsec x10
follows [13]. Fig. 1. Analytic solution for a line source on free-space (dashed line) versus

2-D cylindrical-grid FDTD solution with eight-layer cylindrical PML (solid
line). The inset illustrates the result of the simulation without the PML.
Ill. NUMERICAL RESULTS

The formulation is validated against analytic solutions ob- 1
tained by solving free-space problems in the frequency do-
main, multiplying by the source pulse spectrum, and inverse
Fourier-transforming. In both examples, a quadratic taper on °¢
o, and o, is used inside the PML and, for simplicity,, = 04l
a. = 1 everywhere.

Fig. 1 shows the normalized’, field computed using the
analytic formulation and the 2-D FDTD algorithm for a line
source in a cylindrical grid. The excitation is the derivative
of a Blackman—Hatrris pulse centeredfat= 300 MHz. The
line source is afr, ¢) = (7.5\.,0°) and the field is sampled %4
at (r,¢) = (6.5\.,0°), where A\, = ¢/f.. The grid has a -0}
hard termination at = 9\.. The FDTD algorithm includes a
eight-layer cylindrical PML region before the grid ends. The
PML thickness is0.5A., for a cell sizeAp = A./16 in the Ao oa os o 12 12 185 is
radial direction. The curves are in excellent agreement and no t(sec) x107
reflection is visible. To illustrate the high absorption achievegiq 5 anaiytic solution for an infinitesimal electric dipole on free-space
the inset shows the simulation of the same problem without ttéashed line) versus 3-D spherical-grid FDTD solution with eight-layer
PML. In the PML-EDTD simulation. the maximum residua_fspherical PML (solid line). The inset illustrates the result of the simulation

. . . ! . . without the PML.
amplitude of the normalized’. field over the time-window of
the reflected pulse is less thanx510~2, which is less than
0.8% of the maximum amplitude present in the simulationhDTD simulation, the maximum residual amplitude of the
without PML. The residual field can be attributed not only teormalizedE. field for ¢ > 9 ns is less thad x 1072, which
spurious reflections but also to numerical dispersion effectgs less than 3% of the maximum amplitude present in the

Fig. 2 shows the normalized; field computed with the Simulation without PML.
analytic formulation and the 3-D FDTD algorithm for a point
source in a spherical grid with the same excitation pulse. The
#-polarized dipole is atr, 8, ¢) = (2.5A.,90°,0°). The field is PML's are derived for cylindrical and spherical coordi-
sampled atr, 6, ¢) = (3X.,90°,0°). The grid is terminated at nates. The formulation is based on the complex coordinate
7 = 4)\.. The FDTD algorithm includes a eight-layer sphericadtretching approach. FDTD codes are developed based on the
PML region before the grid ends. The PML thicknes8.&\,, time-domain versions of the equations. The accuracy of the
for a cell sizeAr = X./10 in the radial direction. Again, no formulation is validated by computing the field radiated from
reflection is visible. The small oscillation after the passage bfie and point sources on cylindrical and spherical grids against
the incident pulse is also present in the simulation withoktown analytic results.

PML and can be attributed to the discretization errors and

numerical dispersion effects due to the high grid curvature ACKNOWLEDGMENT

in the simulation region. For illustration, the inset shows the The authors would like to acknowledge the reviewers for
simulation of the same problem without the PML. In the PMLRhelpful comments.

E field (norm.)

IV. CONCLUSION
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