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PML-FDTD in Cylindrical and Spherical Grids
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Abstract— Perfectly matched layers (PML’s) are derived
for cylindrical and spherical finite-difference time-domain
(FDTD) grids. The formulation relies on the complex coordinate
stretching approach. Two-dimensional (2-D) cylindrical and
three-dimensional (3-D) spherical staggered-grid FDTD codes
are written based on the time-domain versions of the equations.
Numerical simulations validate the formulation by showing
very good agreement between the perfectly matched layer-
finite-difference time-domain (FDTD) results and the free-space
analytic solutions.

I. INTRODUCTION

T HE perfectly matched layer (PML) [1] proved to be a very
efficient means to truncate the computational domain in

the finite-difference time-domain (FDTD) method [2]–[6]. The
original PML concept applied only to Cartesian coordinates.
To extend its range of applicability, the PML concept was later
extended to nonorthogonal FDTD grids [7], [8]. However, an
approximate impedance matching condition was used, since
the perfect matching condition was derived based on the
assumption of the metric coefficients to be independent of the
spatial coordinates.

In this work, we derive PML media for cylindrical and
spherical coordinate systems with an exact formulation in the
sense that it provides a reflectionless termination in the contin-
uum limit. The formulation is based on the complex coordinate
stretching approach [2]. Results are compared against analytic
solutions.

II. FORMULATION

With the following change of variables:

(1)

where are the complex stretching variables [2] and
stands for , it is possible to show [9] that the modified
Maxwell’s Equations (ME’s) [2] on a PML medium can be
recast in the same form as the original ME’s but on a com-
plex variable spatial domain, . Closed-form solutions
already obtained in the ordinary media can be mapped to
the PML media through a simple analytic continuation of the
spatial variables to a complex space. Moreover, this analytic
continuation, if causal, can be easily generalized to other
coordinate systems to provide PML’s on these systems [9].
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1) Cylindrical PML: The PML formulation for a cylindri-
cal coordinate system proceeds by writing the ME’s on a
complex cylindrical coordinate. Only the TMcase will be
addressed. The TEcase follows by duality. Since in the
direction the PML formulation does not change, only the 2-D
problem is treated. To achieve the reflectionless absorption of
the outward traveling waves, the radial coordinate is mapped
through ( convention)

(2)

and are added degrees of freedom. By splitting the-
component of the electric field , ME’s in
complex space are cast in a form suitable for time-stepping:

(3a)

(3b)

(3c)

(3d)

(3e)

Only the component ( in the TE case) is split. This
is because the transversal problem has stretching only on the

direction. This is in contrast to the Cartesian case where all
field components need to be split in the split-field formulation
[1], [3]. However, additional fields and are needed.
The time-domain version of (3) is implemented in the usual
cylindrical staggered-grid scheme [12].

Alternative generalizations of the PML to cylindrical coor-
dinates were also recently considered in [10] and [11]. The
approach of [10] is based on the anisotropic formulation [5],
[6], and the approach of [11] is based on a modified version
of ME’s amenable to be recast on a well-posed scheme.

2) Spherical PML: In spherical coordinates, the analytic
continuation is on the radial variable:

(4)

from which the modified Faraday’s law in a form suitable for
time-stepping reads:

(5a)
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(5b)

(5c)

(5d)

(5e)

The modified Ampere’s law follows by duality. In spherical
coordinates there is no need to split the fields at all, since
the PML is achieved through complex stretching on the radial
variable, , only. This is in contrast to the three-dimensional
(3-D) Cartesian case, where there are 12 field components after
field splitting and six boundary surfaces to treat. However,
additional fields components are needed inside the PML:

, and . The spatial discretization scheme
and the treatment of the singularities on the spherical grid
follows [13].

III. N UMERICAL RESULTS

The formulation is validated against analytic solutions ob-
tained by solving free-space problems in the frequency do-
main, multiplying by the source pulse spectrum, and inverse
Fourier-transforming. In both examples, a quadratic taper on

and is used inside the PML and, for simplicity,
everywhere.

Fig. 1 shows the normalized field computed using the
analytic formulation and the 2-D FDTD algorithm for a line
source in a cylindrical grid. The excitation is the derivative
of a Blackman–Harris pulse centered at MHz. The
line source is at and the field is sampled
at , where . The grid has a
hard termination at . The FDTD algorithm includes a
eight-layer cylindrical PML region before the grid ends. The
PML thickness is , for a cell size in the
radial direction. The curves are in excellent agreement and no
reflection is visible. To illustrate the high absorption achieved,
the inset shows the simulation of the same problem without the
PML. In the PML-FDTD simulation, the maximum residual
amplitude of the normalized field over the time-window of
the reflected pulse is less than 510 , which is less than
0.8% of the maximum amplitude present in the simulation
without PML. The residual field can be attributed not only to
spurious reflections but also to numerical dispersion effects.

Fig. 2 shows the normalized field computed with the
analytic formulation and the 3-D FDTD algorithm for a point
source in a spherical grid with the same excitation pulse. The
-polarized dipole is at . The field is

sampled at . The grid is terminated at
. The FDTD algorithm includes a eight-layer spherical

PML region before the grid ends. The PML thickness is ,
for a cell size in the radial direction. Again, no
reflection is visible. The small oscillation after the passage of
the incident pulse is also present in the simulation without
PML and can be attributed to the discretization errors and
numerical dispersion effects due to the high grid curvature
in the simulation region. For illustration, the inset shows the
simulation of the same problem without the PML. In the PML-

Fig. 1. Analytic solution for a line source on free-space (dashed line) versus
2-D cylindrical-grid FDTD solution with eight-layer cylindrical PML (solid
line). The inset illustrates the result of the simulation without the PML.

Fig. 2. Analytic solution for an infinitesimal electric dipole on free-space
(dashed line) versus 3-D spherical-grid FDTD solution with eight-layer
spherical PML (solid line). The inset illustrates the result of the simulation
without the PML.

FDTD simulation, the maximum residual amplitude of the
normalized field for ns is less than , which
is less than 3% of the maximum amplitude present in the
simulation without PML.

IV. CONCLUSION

PML’s are derived for cylindrical and spherical coordi-
nates. The formulation is based on the complex coordinate
stretching approach. FDTD codes are developed based on the
time-domain versions of the equations. The accuracy of the
formulation is validated by computing the field radiated from
line and point sources on cylindrical and spherical grids against
known analytic results.
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